IEICE Electronics Express, Vol.9, No.18, 1461-1466

Analytical memory
bandwidth model for
many-core processor based
systems

Hyuk-Jun Lee', Woo-Cheol Cho', and Eui-Young Chung?
L Dept. of Computer Science and Engineering, Sogang University

#1, Sinsu-dong, Mapo-gu, Seoul 121-742, Korea

2 School of Electrical and Electronic Engineering, Yonsei University

134 Sinchon-dong, Seodaemun-gu, Seoul 120-749, Korea

a) eychung @yonsei.ac.kr

Abstract: Many-core processor based systems gain popularity in
high-performance parallel embedded applications. Estimating memory
bandwidth requirement, i.e. external memory bandwidth, given vari-
ous cache size for target parallel applications requires a prohibitively
large simulation time. In this work, we propose an analytical model
to quickly estimate the memory bandwidth for a given cache size and
help exploring trade-offs between cache sizes and memory bandwidth
requirement. We model the stochastic behavior of cache misses for a
single cache as a random process. Using central limit theorems for
identically or non-identically distributed random processes, we accu-
rately estimate the collective cache misses from hundreds of processor
cores and thus the total memory bandwidth requirement for the whole
system. The results show that our model improves a speed of simula-
tion time up to 200.4 times for 200 cores whereas its estimated results
achieve less than 0.01% difference from the simulated ones for 200 cores
in terms of accuracy.

Keywords: many-core, cache miss, memory bandwidth, central limit
theorem

Classification: Electron devices, circuits, and systems

References

[1] J. Manferdelli, N. Govindaraju, and C. Crall, “Challenges and oppertuni-
ties in many-core computing,” Proc. IEEE, vol. 96, no. 5, May 2008.

[2] [Online] http://www.cisco.com/en/US/prod/collateral/routers/ps9343/
solution_overview_c22-448936.html

[3] C.Yu and P. Petrov, “Off-chip memory bandwidth minimization through
cache partitioning for multi-core platforms,” Design Automation Confer-
ence (DAC), pp. 132-137, June 2010.

[4] P. Billingsley, Probability and Measure, Third ed., John Wiley & sons,
1995.

[5] [Online] http://www.spec.org/cpu2006/

1461

IEICE Electronics Express, Vol.9, No.18, 1461-1466

[6] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R.
Brown, “Mibench: A free, commercially representative embedded bench-
mark suite,” WWC-4’01, pp. 3-14, Dec. 2001.

[7] [Online] http://www.simplescalar.com/

1 Introduction

Many-core processor based systems consist of tens to hundreds of processor
cores and widely gain popularity in high-performance embedded systems run-
ning parallel applications such as multi-media, networking, bio-applications,
scientific applications [1, 2]. Each processor core typically has cache and cache
is connected to the external memories directly or via multi-level caches. Two
conflicting resources in many-core processor based systems are the die size
for on-chip memories and the bandwidth requirement of the on-chip or off-
chip memories. Determining the application-specific optimal cache size and
memory bandwidth for a many-core processor based system via a simulator
could require a prohibitively large simulation time. Previous works on cache
misses for multi-core or many-core based systems focused on how to reduce
the miss rate [3]. To the best of knowledge, no works discussed estimating
memory bandwidth and exploring large design space of many-core based sys-
tem. In this paper, we propose an analytic model which can be used to find
the optimal trade-off between the cache size and memory bandwidth. This
model makes use of stochastic behavior of cache misses, which are application
specific, and uses the central limit theorem. This technique can be used to
rapidly estimate optimal cache size and memory bandwidth for many-core
based system running identical or non-identical parallel applications.

2 Memory hierarchy in target many-core processor architec-
ture

The target processor architecture contains tens to hundreds of cores. Each
processor core has its own cache and the cache is connected to the lower-
level memory, which can be either lower-level caches or external memories.
Our model can be applied to any memory hierarchy where many higher-level
memories, i.e. first-level caches, share a lower-level memory, i.e. a lower-level
cache or external memories, provided that the sharing ratio is high.

In memory hierarchy, tradeoffs among the size of memories, memory
bandwidth, and performance are often observed. For instance, a small higher-
level cache increases the bandwidth requirement of the lower-level memory.
To support high bandwidth, lower-level caches or memories either increase
banks or ports in case of on-chip caches or the number of pins in case of exter-
nal memories, all of which are costly. If sufficient bandwidth is not guaranteed
by the lower-level memories, buffering memory accesses is required and that
could lead to performance loss due to either excessive buffering or proces-
sor stalls caused by buffer overflows. To avoid this, the optimal higher-level
memory size and lower-level memory bandwidth should be determined.

1462

IEICE Electronics Express, Vol.9, No.18, 1461-1466

n
3

16 16 16 16 16
» Meathv 14 14} 14t 14t 14t
o
S "
A TIAVIAN o0
=45 [Mean 2
DD ‘. S A S A
g 2
£ L |
§10 2 6 6 6 6 6
E S 4IT E at E 4 E 4 4
2 2 \[2 E 2 H\F 2 E 2 1
[*}
5
8 ot o o o \(“f ofl| ™+
—2f 1 -2 E—-11 1 -2 1 -2
0
11005 101 1015 102 1025 103 —-4530 —-45 30 45 20 o 20 —45 20
Time (in 100 cycles) x10* HMMER JPEG Patricia Dijkstra blowfish

Fig. 1. (a) Cache miss behavior of blowfish for 2 KB cache
size (left) (b) Mean and standard deviation of
cache misses of the cache with respect to the cache
size in KB (right).

3 Stochastic modeling of cache misses and memory band-
width

One of the key ideas in this work is to identify the cache miss as a random

process which varies over time. The random processes of cache miss for differ-
ent applications have different characteristics, e.g. mean and variance. They
also vary depending on the cache size. In Fig 1 (a), blowfish from Mibench
suite shows very choppy cache miss behavior over time while its mean and
standard deviation are 11.18 and 7.31 respectively. Fig 1 (b) shows the mean
and standard deviation of the random process for cache misses sampled ev-
ery 100 cycles with respect to different cache sizes and applications. In our
proposed scheme, the number of cache misses during a sampling period is
expressed as a random process, M (t), which is application specific. In a
many-core processor environment where each core runs an identical program
independently, the collective behavior of individual cache misses can be ex-
pressed as a sum of random processes. That is, a random process for the
collective miss, C'M ()
the processor and M;(t) is a random process for cache misses from core i.

. M;(t) where n is the number of cores in

The distribution of C'M (t) can be approximated via Central Limit Theorem
(CLT) [4] as a Gaussian distribution as shown in Eq. (1).

1 —(X—np)?
eXp 2no

Pr(X) (1)

2nmo

where p1 and o are a mean and a standard deviation of M (t) respectively
and n is the number of cores in the processor. CLT assumes the number of
processor cores is reasonably large and cache misses from different processor
cores are independent and identically distributed (i.i.d.) random processes,
which dictates that cores are running identical programs.

A same application with different input sets or different applications ex-
hibit the behavior of non-identically distributed random processes. We use
the Lyapunov central limit theorem to cover this case [4]. Eq. (2) shows
the condition to be satisfied in order to apply the Lyapunov central limit
theorem.

1463

IEICE Electronics Express, Vol.9, No.18, 1461-1466

> E(MLE) -) = 0 @)

i=1

WL, 2
where M;(t) is a random process for the cache miss of an application running
on core %, 1; and o; are the mean and standard deviation of M;(t) respectively,
and oy, is A 012. If the condition is met, the sum of random processes for
cache misses of non-identical applications converges to the Gaussian distri-
bution. The equation implies that the condition is satisfied for the random
process in which the growth of high order moments are limited. This can
be easily seen in our case because the maximum number of cache misses per
100 cycles is limited to 100 in the worst case. The distribution of a random
process for collective cache misses, C'M(t), in this case is slightly modified
from Eq. (1). The new equation is shown in Eq. (3).

1 —(x=>" ny)?
exp (3)
\V2moy,

Memory bandwidth can be viewed as another random process, B(t), which
is a function of C'M(t) as shown in Eq. (4).

Pr(X) =

B(t) = CM(t) x Cache Line Size (4)

A conventional engineering method used to estimate the memory bandwidth
requirement is to measure the peak memory bandwidth for a single program
and multiplying that with the number of processor cores. This is, however,
too pessimistic. On the other hand, the use of miss rate only gives an average
value and cannot give an accurate estimation on the peak memory bandwidth
requirement. From Fig. 1(a), we can easily see that peak value for the
cache misses can be quite different from the average value. To estimate the
bandwidth requirement accurately, we consider both mean and variance of
cache misses. CLT gives accurate distribution of collective cache misses (thus
the memory bandwidth requirement) and provides the probability of overflow
in buffers between higher-level and lower-level memory for given memory
bandwidth. If the overflow happens, it backpressures all processor cores to
stall, which could severely degrade performance. The Gaussian distribution
from CLT implies that the probability of overflow decreases exponentially as
we increase the supported bandwidth.

4 Results

To verify the accuracy of our proposed analytical model, we modify Sim-
plescalar [7]. We add routines to collect the statistics of cache misses and
create traces for the cache misses. Traces of first-level cache misses are col-
lected from cores running either identical applications or non-identical appli-
cations. These traces are combined to create a trace for the collective cache
misses from a many-core system. This combined trace is used to create traf-
fic for the lower memory. The statistics for the combined trace (simulation
result) is compared with the estimated collective cache misses based on our

1464

IEICE Electronics Express, Vol.9, No.18, 1461-1466

(a)

(b)

——HMMER (simulated) ——100 cores (simulated)
- - HMMER (estimated) 0.04 - =100 cores (estimated)
——JPEG (simulated) ——200 cores (simulated)
0.15 - - JPEG (estimated) 0.035 - - 200 cores (estimated)
——Patricia (simulated)
- - Patricia (estimated) 0.03
E ——Dijkstra (simulated) g‘ 0.025
2 01 "l - - Dijkstra (estimated) a™
g L fblowf!sh (simulated) -g 0.02
[! - - blowfish (estimated) o
0.015
005 0.01
0.005
0= - = ol
0 20 40 60 80 100 120 0 50 100 150 200
Collective cache misses (per 100 cycles) Collective cache misses (per 100 cycles)
(c) (d)
20

—JPEG 1 —— 2KB(simulated)

- - -Patricia - - 2KB(estimated)

- - Dijkstra ——4KB(simulated)
<15 ——blowfish 0.8 - - 4KB(e§timated)
g = ——8KB(simulated)
8 % - - 8KB(estimated)
T g 0.6 — 16KB(simulated)
2 10 s - - 16KB(estimated)
= T =
§ N % 0.4
[N 3
2 AN [¢]

8 5 - \\ 0.2
TN 0
c —————————————
0 50 150 200 0 1500

Numbe1rogf cores Mgr?‘:%ry Bandwidth (g)ggs)
Fig. 2. Distribution of collective cache misses from simu-
lation and estimation for (a) identical applications
with 16 KB cache and (b) non-identical applica-
tions with 32 KB cache. (c) Difference in stan-
dard deviation between estimated and simulated
cache misses. (d) Overflow probability for mem-
ory bandwidth with respect to different cache sizes
in 100 cores running Patricia.

analytical model using the Eq. (1) and (3). Fig. 2(a) shows the distribu-
tion for both simulated and estimated cache misses for various applications
running on a many-core processor with 50 cores. Applications include gene
search (Hmmer) from SPEC benchmark [5] and multimedia(JPEG), network-
ing (Dijkstra, Patricia), security (blowfish) from Mibench suite [6]. In this
experiment, many copies of the same application are running on 50 cores
and the distribution for the simulated cache misses from 50 processor cores
is quite close to the estimated one, which proves that our model is relatively
accurate in estimating cache misses with only 50 cores. The mean values for
estimated and simulated cache misses differ by less than 0.01%. The differ-
ences in standard deviation for simulated and estimated cache misses for 10
cores through 200 cores are shown in Fig. 2 (c). They decrease to 1~2% as
the number of cores increases beyond 100. Fig. 2 (b) shows the distribution
for both simulated and estimated cache misses for a mixture of applications
running on 100 or 200 processor cores. In this experiment, 30%, 30%, and
40% of processor cores run blowfish, Dijkstra, and Patricia respectively. The
results show that estimation via Lyaponov CLT again accurately predicts
collective cache misses for a mixture of applications. The differences in the
mean of simulated and estimated collective cache misses are only 0.05% and

1465

IEICE Electronics Express, Vol.9, No.18, 1461-1466

Table I. Simulation time with varying number of cores for
various applications

Applications ” 1 core | 10 core | 50 cores | 100 cores | 200 cores

Patricia(small input) | 1m15s | 12mb4s | 63m38s | 126m36s | 250m27s
JPEG (small input) 27s 4mbH3s | 22m33s | 42m33s | 86m48s

Hmmer | 45md1s [456m50s | N/A | N/A [N/A

0.01% for 100 and 200 cores. Fig. 2(d) shows the probability of overflow
for each supported memory bandwidth in a processor consisting of 100 cores
running Patricia. In other words, each curve (1-cumulative density function)
shows the probability of the temporal peak memory bandwidth required by
100 copies of Patricia being greater than the available memory bandwidth.
The exponential decay implies that the probability decreases rapidly as we
increase the available memory bandwidth. In addition, as we increase the
cache size, the required memory bandwidth decreases. This plot can be used
to optimize the cache size and memory bandwidth. Again, our estimated
distributions closely track the simulated ones.

We measure simulation time on 2.4 GHz Intel Xeon Dual-core Proces-
sor and show them in Table I. The simulation consists of two major steps:
running identical or non-identical programs on processor cores to generates
cache miss trace files and merging trace files to generate collective cache
misses. The first step dominates the simulation time and simulating inde-
pendent programs increases the simulation time roughly in proportion to the
number of cores. For this reason, the speedup in simulation time for Patricia
and JPEG are 200.4 and 192.9 respectively for 200 cores. In Hmmer, the
simulation times larger than a day are omitted because it takes too long to
perform any meaningful architecture evaluation. From Table I, it is clear that
our analytical model can significantly reduce architecture evaluation time.

5 Conclusion

In this paper, we propose an analytical model to rapidly estimate the required
lower-level memory bandwidth of many-core processor based system given
first-level cache size and statistical behavior of programs. We can use this
result to study the architectural trade-offs between the cache size of processor
cores and the lower level memory bandwidth. While simulating many-core
processor takes a prohibitively large time which makes it impossible to study
the various architectural alternatives, our estimation scheme can provide an
accurate and essential tool for many-core processor based SoC design.

Acknowledgments

This work was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MEST) (No.2011-0023798,
No0.2010-0025423, and No.2010-0026822) and by the Sogang University Re-
search Grant of 2011 (No.201110026).

1466

